

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	XBMC Swift 1.0.1 documentation

Welcome to xbmcswift2’s documentation!

Welcome to the documentation for xbmcswift2. xbmcswift2 is a small framework to
ease development of XBMC addons. Whether you are an experienced addon
developer, or just coding your first addon, you’ll find benefits to using xbmcswift2.

This documentation is divided into several parts. If you are new, you should
start with the Installation and then move on to Quickstart. If
you would prefer a more detailed walkthrough, try the Tutorial.

To get a deeper understanding of xbmcswift2, check out URL Routing,
Caching and Storage and the complete API reference. For specific code
samples, check out Patterns. If you are upgrading from xbmcswift, check
out the Upgrading from xbmcswift page.

For a list of XBMC addons which use xbmcswift2, see Addons Powered by xbmcswift2.

Basic Info

	Installation
	virtualenv

	Creating a Virtual Environment

	Quickstart
	Introduction to XBMC Addons

	Creating the Plugin Skeleton

	Hello XBMC

	Running Addons from the Command Line

	URL Routing

	Playing Media

	Using xbmc, xbmcgui, xbmcaddon

	Going further

	Tutorial
	Creating the Plugin Structure

	Setup for this Tutorial

	Creating our Addon’s Main Menu

	Creating the Subjects View

	Adding Code to show_subject_info

	Adding the show_course_info and play_lecture views

	Conclusion

	The ListItem
	label

	label2

	icon

	thumbnail

	path

	selected

	info

	properties

	context_menu

	replace_context_menu

	is_playable

	info_type

	stream_info

	Running xbmcswift2 on the Command Line
	Commands

Advanced User Guide

	URL Routing
	Encoding Parameters in URLs

	Multiple Parameters

	Multiple URL Patterns and Defaults

	Extra Parameters

	URL Encoding and Pickling

	Caching and Storage
	Storing Arbitraty Python Objects

	File Formats

	Expirations

	Caching Decorator

	Caching Views

	Caveats

	Patterns
	Caching

	Adding pagination

	Reusing views with multiple routes

	Adding sort methods

	Playing RTMP urls

	Using settings

	Using the Context Menu

	Using extra parameters in the query string

	Using Modules

	Testing with Nose

API Reference

	API
	Plugin Object

	ListItem

	Request

	Actions

	Extended API

Other Notes

	Upgrading from xbmcswift

	Addons Powered by xbmcswift2

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

Installation

Note

The purpose of xbmcswift2 is to have the ability to run the addon on the
command line as well as in XBMC. This means that we will have to install
xbmcswift2 twice, once for the command line and once as an XBMC addon.

The XBMC version of xbmcswift2 is a specially packaged version of the main
release. It excludes some CLI code and tests. It also contains XBMC
required files like addon.xml.

The easiest way to get the most recent version of xbmcswift2 for XBMC is to
install an addon that requires xbmcswift2. You can find a list of such addons
on the Addons Powered by xbmcswift2 page. The other options is download the current XBMC
distribution from https://github.com/jbeluch/xbmcswift2-xbmc-dist/tags and
unpack it into your addons folder.

Now, on to installing xbmcswift2 for use on the command line.

virtualenv

Virtualenv is an awesome tool that enables clean installation and removal of
python libraries into a sequestered environment. Using a virtual environment
means that when you install a library, it doesn’t pollute your system-wide
python installation. This makes it possible to install different versions of a
library in different environments and they will never conflict. It’s a good
habit to get into when doing python development. So, first we’re going to
install virtualenv.

If you already have pip installed, you can simply:

$ sudo pip install virtualenv

or if you only have easy_install:

$ sudo easy_install virtualenv

I also like to use some helpful virtualenv scripts, so install
virtualenv-wrapper as well:

$ sudo pip install virtualenv-wrapper

Creating a Virtual Environment

Now we can create our virtualenv:

$ mkvirtualenv xbmcswift2

When this completes, your prompt should now be prefixed by (xbmcswift2). The
new prompt signals that we are now working within our virtualenv. Any libraries
that we install via pip will only be available in this environment. Now we’ll
install xbmcswift2:

$ pip install xbmcswift2

Everything should be good to go. When you would like to work on your project
in the future, issue the following command to start your virtual env:

$ workon xbmcswift2

and to deactive the virtualenv:

$ deactivate

You should check out the Running xbmcswift2 on the Command Line page next.

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

Quickstart

If you haven’t already installed xbmcswift2, head over to the installation
page.

The purpose of xbmcswift2 is to empower plugin writers to develop and debug
their plugins faster. This is faciliated by:

	A bootstrap script to create an empty addon complete with folder structure
and required files.

	Seamless testing of addons by enabling an addon to be run on the command line
or in XBMC. xbmcswift2 handles mocking the xbmc python modules to ensure your
addon will run (in a limited fashion) outside of XBMC without any code
changes.

	Basic URL routing code, so you can focus on writing the web parsing code
specific to your plugin, and not deal with repeated boilerplate and url
parsing.

	A library of helpful functions and code patterns to enhance your addon’s
functionality.

Introduction to XBMC Addons

Before going any further, you should already be familiar with the general file
structure and necessary files for an XBMC addon. If not, please spend a few
minutes reading about addons in the XBMC wiki [http://wiki.xbmc.org/index.php?title=Add-on_development].

Creating the Plugin Skeleton

xbmcswift2 comes with a helpful console script that will create a plugin
skeleton for you, including all the necessary folders and files to get started.
Simply run xbmcswift2 create and answer a few questions to personalize your
addon.

Below is an example session:

$ xbmcswift2 create

 xbmcswift2 - A micro-framework for creating XBMC plugins.
 xbmc@jonathanbeluch.com
 --

I'm going to ask you a few questions to get this project started.
What is your plugin name? : Hello XBMC
Enter your plugin id. [plugin.video.helloxbmc]:
Enter parent folder (where to create project) [/private/tmp]:
Enter provider name : Jonathan Beluch (jbel)
Projects successfully created in /private/tmp/plugin.video.helloxbmc.
Done.

Hello XBMC

If you navigate to the newly created folder plugin.video.helloxbmc, you’ll
find an addon.py exactly like the one below.

from xbmcswift2 import Plugin

plugin = Plugin()

@plugin.route('/')
def index():
 item = {
 'label': 'Hello XBMC!',
 'path': 'http://s3.amazonaws.com/KA-youtube-converted/JwO_25S_eWE.mp4/JwO_25S_eWE.mp4',
 'is_playable': True
 }
 return [item]

if __name__ == '__main__':
 plugin.run()

The above code is a fully functioning XBMC addon (not that it does much!). So
what does the code do?

	After importing the Plugin class, we create our plugin instance. xbmcswift
will parse the proper addon name and id from the addon.xml file.

	We are using the plugin.route decorator on the index function. This
binds a url path of ‘/’ to the index function. (‘/’ is the default URL
path).

Note: The url rule of ‘/’ must always exist in a plugin. This is the default
route when a plugin is first run.

	The index function creates a single dict with some key/vals. This is how you
create a listitem using xbmcswift2. At a minimum, most items have a path
and label. The is_playable flag tells XBMC that this is a media
item, and not a URL which points back to an addon.

	We return a list from the index function, that contains a single item. For a
typical xbmcswift2 view, this is the proper way to add list items.

	We call plugin.run() to run our plugin. It is imperative that this line
is inside the __name__ guard. If it is not, your addon won’t run
correctly on the command line.

Running Addons from the Command Line

One of the shining points of xbmcswift2 is the ability to run plugins from the
command line. To do so, ensure your working directory is the root of your addon
folder (where you addon.xml file is located) and execute xbmcswift2 run.:

$ xbmcswift2 run
2012-05-02 19:02:37,785 - DEBUG - [xbmcswift2] Adding url rule "/" named "index" pointing to function "index"
2012-05-02 19:02:37,798 - DEBUG - [xbmcswift2] Dispatching / to once
2012-05-02 19:02:37,798 - INFO - [xbmcswift2] Request for "/" matches rule for function "index"

 # Label Path

[0] Hello XBMC! (None)

Right away we can see the output of our plugin. When running in the CLI,
xbmcswift2 prints log messages to STDERR, so you can hide them by appending
2>/dev/null to the previous command.. Below the logs we can see a simple
display of our listitems, in this case a single item.

See Running xbmcswift2 on the Command Line for a more detailed explanation of running on the command line.

URL Routing

Another advantage of using xbmcswift2, is its clean URL routing code. This
means you don’t have to write your own code to parse the URL provided by XBMC
and route it to a specific function. xbmcswift2 uses a a path passed to the
route() decorator to bind a URL to a function. For
example, a route of /videos/ will result in a URL of
plugin://plugin.video.helloxbmc/videos/ calling the decorated function.

It’s even possible to pass variables to functions from the URLs. You might
have a function like this to list videos for a given category:

@plugin.route('/categories/<category>/')
def show_videos(category):
 '''Display videos for the provided category'''
 # An incoming URL of /categories/science/ would call this function and
 # category would have a value of 'science'.
 items = get_video_items(category)
 return plugin.finish(items)

Currently, there is no type coercion, so all variables plucked from URLs will
be strings.

Now we have a way of directing incoming URLs to specific views. But how do we
link list items to other views in our code? We’ll modify our Hello XBMC addon:

@plugin.route('/')
def index():
 items = [
 {'label': 'Hola XBMC!', 'path': plugin.url_for('show_label', label='spanish')},
 {'label': 'Bonjour XBMC!', 'path': plugin.url_for('show_label', label='french')},
]
 return items

@plugin.route('/labels/<label>/')
def show_label(label):
 # Normally we would use label to parse a specific web page, in this case we are just
 # using it for a new list item label to show how URL parsing works.
 items = [
 {'label': label},
]
 return items

Let’s run our plugin interactively now to explore:

$ xbmcswift2 run interactive
2012-05-02 19:14:53,792 - DEBUG - [xbmcswift2] Adding url rule "/" named "index" pointing to function "index"
2012-05-02 19:14:53,792 - DEBUG - [xbmcswift2] Adding url rule "/labels/<label>/" named "show_label" pointing to function "show_label"
2012-05-02 19:14:53,793 - DEBUG - [xbmcswift2] Dispatching / to interactive
2012-05-02 19:14:53,794 - INFO - [xbmcswift2] Request for "/" matches rule for function "index"

 # Label Path

[0] Hola XBMC! (plugin://plugin.video.helloxbmc/labels/spanish/)
[1] Bonjour XBMC! (plugin://plugin.video.helloxbmc/labels/french/)

Choose an item or "q" to quit: 0

2012-05-02 19:14:59,854 - INFO - [xbmcswift2] Request for "/labels/spanish/" matches rule for function "show_label"
--
Label Path
--
[0] .. (plugin://plugin.video.helloxbmc/)
[1] spanish (None)
--
Choose an item or "q" to quit: q

$ python addon.py interactive
--
[0] Hola XBMC! (plugin://plugin.video.helloxbmc/labels/spanish/)
[1] Bonjour XBMC! (plugin://plugin.video.helloxbmc/labels/french/)
Choose an item or "q" to quit: 0
--
[0] spanish (None)

We’ve introduced a few new topics here.

	We passed interactive as a positional argument to the xbmcswift2 run
command. This enables us to interact with the list items rather than just
print them once and exit.

	We’ve used url_for() to create a url pointing to a
different view function. This is how view functions create list items that
link to other functions.

	Our function show_label requires an argument ‘label’, so we pass a
keyword argument with the same name to url_for.

	To set the url for a list item, we set the ‘path’ keyword in the item
dictionary.

	xbmcswift2 display a list item of ‘..’, which is simliar to XBMC’s ‘..’ list
item. This enables you to go back to the parent directory.

To learn more about URL routing and other available options, check out the <API>
or the <patterns page>.

Playing Media

The last thing we haven’t covered is how to play an actual video. By default,
all items returned are directory items. This means that they act as a directory
for more list items, and its URL points back into the plugin. To differentiate
playable media from directory items, we set is_playable to True in our
item dictionary.

First, let’s add a new view to play some media:

@plugin.route('/videos/')
def show_videos():
 items = [
 {'label': 'Calculus: Derivatives 1',
 'path': 'http://s3.amazonaws.com/KA-youtube-converted/ANyVpMS3HL4.mp4/ANyVpMS3HL4.mp4',
 'is_playable': True,
 }
]
 return plugin.finish(items)

As you can see, the URL value for path is a direct link to a video asset, we are not calling
url_for. If you need to use XBMC’s setResolveUrl functionality, see the
patterns section for plugin.set_resolved_url.

Now let’s update out item dictionary in show_label to add a path:

{'label': label, 'path': plugin.url_for('show_videos')},

Now, you have a fully functioning XBMC addon, complete with nested menus and
playable media.

One more section before going off on your own!

Using xbmc, xbmcgui, xbmcaddon

You can always import and call any of the xbmc modules directly if you need
advanced functionality that xbmcswift2 doesn’t support. However, if you still
want the ability to run plugins from the command line you should import the
xbmc modules from xbmcswift2.

from xbmcswift2 import xbmc, xbmcgui

Since these modules are written in C, they are only available when running
XBMC. To enable plugins to run on the command line, xbmcswift2 has mock
versions of these modules.

Going further

This should be enough to get started with your first simple XBMC addon. If
you’d like more information, please check out the detailed Tutorial and
also review common Patterns.

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

Tutorial

At the end of this tutorial we’re going to have a basic version of the Academic
Earth Plugin. This plugin plays videos from http://www.academicearth.org/.

Since this tutorial is meant to cover the usage of xbmcswift2, we will not be
covering HTML scraping. It makes sense to partition your scraping code into a
separate module from your addon’s core functionality. In this example, we’re
going to use a scraping library for academic earth that I already have written.

Creating the Plugin Structure

The first step is to create your working directory for your addon. Since this
can be repetitive, xbmcswift2 provides a script which will create the necessary
files and folders for you. So we’ll do just that:

(xbmcswift2)jon@lenovo tmp $ xbmcswift2 create

 xbmcswift2 - A micro-framework for creating XBMC plugins.
 xbmc@jonathanbeluch.com
 --

 I'm going to ask you a few questions to get this project started.
 What is your plugin name? : Academic Earth Tutorial
 Enter your plugin id. [plugin.video.academicearthtutorial]:
 Enter parent folder (where to create project) [/tmp]:
 Enter provider name : Jonathan Beluch (jbel)
 Projects successfully created in /tmp/plugin.video.academicearthtutorial.
 Done.

If you cd into the created directory, you should see the familiar addon
structure, including addon.py, addon.xml, resourcres directory,
etc.

Setup for this Tutorial

To make this tutorial go a bit smoother, we’re going to use some existing code
which handles the scraping of the Academic Earth website. Download this file [https://github.com/downloads/jbeluch/xbmc-academic-earth/academicearth.tgz]
and extract it to resources/lib/.

$ cd resources/lib
$ wget https://github.com/downloads/jbeluch/xbmc-academic-earth/academicearth.tgz
$ tar -xvzf academicearth.tgz
$ rm academicearth.tgz

We should now have an academicearth directory in our lib directory.

Since our api library requires the use of BeautifulSoup, we’ll need to add this
as a depenency to our addon.xml file.

If you open the addon.xml file, you’ll notice that xbmcswift2 is already in your dependencies:

<import addon="xbmc.python" version="2.0" />
<import addon="script.module.xbmcswift2" version="1.1.1" />

We’ll add BeautifulSoup right after those lines:

<import addon="script.module.beautifulsoup" version="3.0.8" />

The last step is to install BeautifulSoup locally, so we can run our addon on
the command line.:

$ pip install BeautifulSoup

Creating our Addon’s Main Menu

Let’s modify the the index function, to look like this:

@plugin.route('/')
def main_menu():
 items = [
 {'label': 'Show Subjects', 'path': plugin.url_for('show_subjects')}
]
 return items

The main_menu function is going to be our default view. Take note that is
has the route of /. The first time the addon is launched, there will be no
state information, so the requested URL will match ‘/’.

If you were to run the plugin now, you’d see an exception about a view not
being found. This is because we are specifying a view name of ‘show_subjects’
but we don’t have a view with that name! So let’s create a stub for that view.

@plugin.route('/subjects/')
def show_subjects():
 pass

So now we have a basic plugin with two views. Keep in mind as we go along, that
we can always run the plugin from the command line.:

$ xbmcswift2 run 2>/dev/null
--
 # Label Path
 --
 [0] Subjects (plugin://plugin.video.academicearth/subjects/)
 --

Creating the Subjects View

Now let’s add some logic to our show_subjects function.

@plugin.route('/subjects/')
def show_subjects():
 api = AcademicEarth()
 subjects = api.get_subjects()

 items = [{
 'label': subject.name,
 'path': plugin.url_for('show_subject_info', url=subject.url),
 } for subject in subjects]

 sorted_items = sorted(items, key=lambda item: item['label'])
 return sorted_items

You can see that we are going to be using our Academic Earth api module here.
So we need to import the class before we instantiate it: from
resources.lib.academicearth.api import AcademicEarth.

The call to get_subjects returns a list of Subject objects with various
attributes that we can access.

So our code simply loops over the subjects and creates a dictionary for each
subject. These simple dictionaries will be converted by xbmcswift2 into proper
list items and then displayed by XBMC. The two mandatory keys are label,
which is the text to display for the item, and path, which is the URL to
follow when the item is selected.

Here, if the user selects a subject list item, we want to send them to the
show_subject_info function. Notice we are also passing a keyword argument
to the url_for method. This is the main way that we can pass information
between successive invocations of the addon. By default, XBMC addons are
stateless, each time a user clicks on an item the addon is executed, it does
some work and then exits. To keep track of what the user was doing, we need to
encode the information in the url. xbmcswift2 handles the url encoding as long
as you pass the arguments to url_for.

The last lines of code in our view simply sort the list of dictionaries based
on the label and then return the list.

The last step we need to take before running our addon is to stub out the
show_subject_info view.

@plugin.route('/subjects/<url>/')
def show_subject_info(url):
 pass

Note that since we are passing a url argument to url_for1, we need to
ensure our view can handle the argument. This involves creating a placeholder
in the url, <url> and then ensuring our view takes a single argument,
url. xbmcswift2 will attempt to match incoming URLs against the list of
routes. If it finds a match, it will convert any instances of <var_name> to
variables and then call the view with those variables. See URL Routing for
more detailed information about routing.

Now let’s run our plugin in interactive mode (for the sake of brevity I’ve replaces a lot of entries in the example output with ...):

$ xbmcswift2 run interactive 2>/dev/null
--
 # Label Path
--
[0] Subjects (plugin://plugin.video.academicearth/subjects/)
--
Choose an item or "q" to quit: 0

--
 # Label Path
--
[0] .. (plugin://plugin.video.academicearth/)
[1] ACT (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fact/)
[2] Accounting (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Faccounting/)
[3] Algebra (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Falgebra/)
[4] Anthropology (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fanthropology/)
[5] Applied CompSci (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fapplied-computer-science/)
[6] Architecture (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Farchitecture/)
...
[67] Visualization & Graphics (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fvisualization-graphics/)
--
Choose an item or "q" to quit:

The first output we see is our main menu. Then we are prompted for an item to
select (only 1 available in this case). When we select Subjects, we are then
routed to our show_subjects view.

Adding Code to show_subject_info

Let’s add some logic to our show_subject_info view:

@plugin.route('/subjects/<url>/')
def show_subject_info(url):
 subject = Subject.from_url(url)

 courses = [{
 'label': course.name,
 'path': plugin.url_for('show_course_info', url=course.url),
 } for course in subject.courses]

 lectures = [{
 'label': 'Lecture: %s' % lecture.name,
 'path': plugin.url_for('play_lecture', url=lecture.url),
 'is_playable': True,
 } for lecture in subject.lectures]

 by_label = itemgetter('label')
 items = sorted(courses, key=by_label) + sorted(lectures, key=by_label)
 return items

Most of this should look very similar to our code for show subjects. This time
however, we have two different types of Academic Earth content to handle,
courses and lectures. We want courses to route to show_course_info, which
will list all of the lectures for the course. Lectures, however, are simply
videos, so we want these list items to play a video when the user selects one.
We are going to route lectures to play_lecture.

A new concept in this view is the is_playable item. By default, list items
in xbmcswift2 are not playable. This means that XBMC expects the list item to
point back to an addon and will not attempt to play a video (or audio) for the
given URL. When you are finally ready for XBMC to play a video, a special flag
must be set. xbmcswift2 handles this for you, all you need to do is remember to
set the is_playable flag to True.

There is another new concept in this view as well. Typically, if you tell XBMC
that a URL is playable, you will pass a direct URL to a resource such as an mp4
file. In this case, we have to do more scraping in order to figure out the URL
for the particular video the user selects. So our playable URL actually calls
back into our addon, which will then make use of plugin.set_resolved_url().

Adding the show_course_info and play_lecture views

Let’s add the following code to complete our addon:

@plugin.route('/courses/<url>/')
def show_course_info(url):
 course = Course.from_url(url)
 lectures = [{
 'label': 'Lecture: %s' % lecture.name,
 'path': plugin.url_for('play_lecture', url=lecture.url),
 'is_playable': True,
 } for lecture in course.lectures]

 return sorted(lectures, key=itemgetter('label'))

@plugin.route('/lectures/<url>/')
def play_lecture(url):
 lecture = Lecture.from_url(url)
 url = 'plugin://plugin.video.youtube/?action=play_video&videoid=%s' % lecture.youtube_id
 plugin.log.info('Playing url: %s' % url)
 plugin.set_resolved_url(url)

The show_course_info view should look pretty familiar at this point. We are
just listing the lectures for the given course url.

The play_lecture view introduces some new concepts however. Remember that
we told XBMC that our lecture items were playable. Since we gave a URL which
pointed to our addon, we now have to use plugin.set_resolved_url(url). This
communicates to XBMC, that this is the real url that we want to play.

We are introducing one more layer of indirection here however. Since all of the
content on Academic Earth is hosted on youtube, our addon would normally
require lots of extra code just to parse URLs out of youtube. However, the
youtube addon conveniently does all of that! So, we will actually set the
playable URL to point to the youtube plugin, which will then provide XBMC with
the actual playable URL. Sounds a bit complicated, but it makes addons much
simpler in the end. Our addon simply deals with parsing the Academic Earth
website, and leaves anything youtube specific to the youtube addon.

The last step is now to add youtube as a dependency for our addon. Let’s edit
the addon.xml again and add youtube:

<import addon="plugin.video.youtube" version="3.1.0" />

Conclusion

We’re finished! You should be able to navigate your addon using the command
line. You should also be able to test your addon directly in XBMC. I personally
like to use symlinks to test my addons. On linux, you could do something like
this:

$ cd ~/.xbmc/addons
$ ln -s ~/Code/plugin.video.academicearthtutorial

Note that you’ll also have to install the xbmcswift2 XBMC distribution. The
easiest way is to install one of the addons listed on the Addons Powered by xbmcswift2
page. Since they all require xbmcswift2 as a dependency, it will automatically
be installed. The other option is to download the newest released version from
this page [https://github.com/jbeluch/xbmcswift2-xbmc-dist/tags] and unzip
it in your addons directory.

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

The ListItem

xbmcswift2 prefers to represent XBMC list items as plain python dictionaries as
much as possible. Views return lists of dictionaries, where each dict
represents an XBMC listitem. The list of valid keys in an item dict can always
be validated by reviewing the available arguments to
xbmcswift2.ListItem.from_dict(). However, we’ll go into more detail here.

Valid keys in an item dict are:

	label

	label2

	icon

	thumbnail

	path

	selected

	info

	properties

	context_menu

	replace_context_menu

	is_playable

	info_type

	stream_info

label

A required string. Used as the main display label for the list item.

label2

A string. Used as the alternate display label for the list item.

icon

A path to an icon image.

thumbnail

A path to a thumbnail image.

path

A required string.

For non-playable items, this is typically a URL for a different path in the
same addon. To derive URLs for other views within your addon, use
xbmcswift2.Plugin.url_for().

For playable items, this is typically a URL to a remote media file. (One
exception, is if you are using the set_resolved_url pattern, the URL will be
playable but will also call back into your addon.)

selected

A boolean which will set the item as selected. False is default.

info

A dictionary of key/values of metadata information about the item. See the
XBMC docs [http://mirrors.xbmc.org/docs/python-docs/xbmcgui.html#ListItem-setInfo] for
a list of valid info items. Keys are always strings but values should be the
correct type required by XBMC.

Also, see the related info_type key.

properties

A dict of properties, similar to info-labels. See
http://mirrors.xbmc.org/docs/python-docs/xbmcgui.html#ListItem-setProperty for
more information.

context_menu

A list of tuples, where each tuple is of length 2. The tuple should be (label,
action) where action is a string representing a built-in XBMC function. See the
XBMC documentation [http://mirrors.xbmc.org/docs/python-docs/xbmcgui.html#ListItem-addContextMenuItems]
for more details and Using the Context Menu for some example code.

replace_context_menu

Used in conjunction with context_menu. A boolean indicating whether to
replace the existing context menu with the passed context menu items. Defaults
to False.

is_playable

A boolean indicating whether the item dict is a playable item. False indicates
that the item is a directory item. Use True when the path is a direct media
URL, or a URL that calls back to your addon where set_resolved_url will be
used.

info_type

Used in conjunction with info. The default value is usually configured
automatically from your addon.xml. See
http://mirrors.xbmc.org/docs/python-docs/xbmcgui.html#ListItem-setInfo for
valid values.

stream_info

A dict where each key is a stream type and each value is another dict of stream
values. See
http://mirrors.xbmc.org/docs/python-docs/xbmcgui.html#ListItem-addStreamInfo
for more information.

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

Running xbmcswift2 on the Command Line

Commands

When running xbmcswift2 from the command line, there are two commands
available, create and run. create is a script that will create the basic
scaffolding and necessary files for an XBMC addon and personalize it by asking
you a few questions. run enables you to debug your addon on the command line.

To see the command line help, simply execute xbmcswift2 -h. Both of the
commands are explained further below.

create

To create a new addon, change your current working directory to a location
where you want your addon folder to be created. Then execute xbmcswift2
create. After answering a few questions, you should have the basic addon
structure in place.

run

When running an addon on the command line, there are three different run modes
available, once, interactive, and crawl.

There is also a second positional argument, url, which is optional. By
default, xbmcswift2 will run the root URL of your addon (a path of ‘/’), e.g.
plugin://plugin.video.academicearth/. This is the same default URL that
XBMC uses when you first enter an addon. You can gather URLs from the output of
xbmcswift2.

The options -q and -v decrease and increase the logging level.

Note

To enable running on the command line, xbmcswift2 attempts to mock a
portion of the XBMC python bindings. Certain functions behave properly like
looking up strings. However, if a function has not been implemented,
xbmcswift2 lets the function call pass silently to avoid exceptions and
allow the plugin to run in a limited fashion. This is why you’ll often see
WARNING log messages when running on the command line.

If you plan on using the command line to develop your addons, you should
always import the xbmc modules from xbmcswift2:

from xbcmswift2 import xbmcgui

xbmcswift2 will correctly import the proper module based on the
environment. When running in XBMC, it will import the actual modules, and
when running on the command line it will import mocked modules without
error.

once

Executes the addon once then quits. Useful for testing when used
with the optional url argument.:

$ xbmcswift2 run once # you can omit the once argument as it is the default

--
 # Label Path
--
[0] Subjects (plugin://plugin.video.academicearth/subjects/)
--

$ xbmcswift2 run once plugin://plugin.video.academicearth/subjects/
--
 # Label Path
--
 [0] ACT (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fact/)
 [1] Accounting (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Faccounting/)
 [2] Algebra (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Falgebra/)
 [3] Anthropology (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fanthropology/)
 [4] Applied CompSci (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fapplied-computer-science/)
 ...

interactive

Allows the user to step through their addon using an interactive session. This
is meant to mimic the basic XBMC interface of clicking on a listitem, which
then brings up a new directory listing. After each listing is displayed the
user will be prompted for a listitem to select. There will always be a ..
option to return to the previous directory (except for the initial URL).:

$ xbmcswift2 run interactive
--
 # Label Path
--
[0] Subjects (plugin://plugin.video.academicearth/subjects/)
--
Choose an item or "q" to quit: 0

--
 # Label Path
--
[0] .. (plugin://plugin.video.academicearth/)
[1] ACT (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fact/)
[2] Accounting (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Faccounting/)
[3] Algebra (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Falgebra/)
[4] Anthropology (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fanthropology/)
--
Choose an item or "q" to quit: 1

 # Label Path

[0] .. (plugin://plugin.video.academicearth/subjects/)
[1] ACT - Science Test Prep (plugin://plugin.video.academicearth/courses/http%3A%2F%2Fwww.academicearth.org%2Fcourses%2Fact-science-test-prep/)

crawl

Used to crawl every available path in your addon. In between each request the
user will be prompted to hit Enter to continue.:

$ xbmcswift2 run crawl 2>/dev/null
--
 # Label Path
--
[0] Subjects (plugin://plugin.video.academicearth/subjects/)
--
Enter to continue or "q" to quit
--
 # Label Path
--
[0] ACT (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fact/)
[1] Accounting (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Faccounting/)
[2] Algebra (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Falgebra/)
[3] Anthropology (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fanthropology/)
[4] Applied CompSci (plugin://plugin.video.academicearth/subjects/http%3A%2F%2Fwww.academicearth.org%2Fsubjects%2Fapplied-computer-science/)
--
Enter to continue or "q" to quit

 # Label Path

[0] A Cultural and Scientific Survey of the Eye and Vision (plugin://plugin.video.academicearth/courses/http%3A%2F%2Fwww.academicearth.org%2Fcourses%2Fa-cultural-and-scientific-survey-of-the-eye-and-vision/)
[1] Autism and Related Disorders (plugin://plugin.video.academicearth/courses/http%3A%2F%2Fwww.academicearth.org%2Fcourses%2Fautism-and-related-disorders/)
[2] Biology (plugin://plugin.video.academicearth/courses/http%3A%2F%2Fwww.academicearth.org%2Fcourses%2Fbiology/)
[3] Core Science - Biochemistry I (plugin://plugin.video.academicearth/courses/http%3A%2F%2Fwww.academicearth.org%2Fcourses%2Fcore-science---biochemistry-i/)
[4] Darwin's Legacy (plugin://plugin.video.academicearth/courses/http%3A%2F%2Fwww.academicearth.org%2Fcourses%2Fdarwins-legacy/)

Enter to continue or "q" to quit

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

URL Routing

If you just need a basic introduction to URL routing, you can check out
Quickstart or Tutorial. This page explains all of the options and
more advanced usage of URL routing.

Encoding Parameters in URLs

You can pass parameters between view functions but putting instances of
<var_name> in your url patterns that are passed to the route decorator.

For instance, if I had a view that should take a category_id, my call to route
would look like so:

@plugin.route('/categories/<category_id>')
def show_category(category_id):
 pass

xbmcswift2 will attempt to match any incoming URLs against that pattern, so all
of the following URLs would match:

	/categories/123

	/categories/apples

	/categories/apples%3Dpears

xbmcswift2 will then extract the part of the URL that machtes a pattern withing
the angle brackets and will call your view with those variables (variables will
always be strings). So if you have one pattern in your URL, your view function
should take at least one argument.

Multiple Parameters

It’s possible to pass more than one parameter.

@plugin.route('/categories/<category_id>/<subcategory>')
def show_category(category_id, subcategory):
 pass

The order of the arguments will always match the order specified in the URL
pattern.

Multiple URL Patterns and Defaults

Sometimes it becomes useful to resuse a view for a different URL pattern. It’s
possible to bind more than one URL pattern to a view. Keep in mind however,
that to use url_for unambiguously, you’ll need to provide the name
argument to route to differentiate the two.

@plugin.route('/categories/<category_id>', name='show_category_firstpage')
@plugin.route('/categories/<category_id>/<page>')
def show_category(category_id, page='0'):
 pass

So now two different URL patterns will match the show_category view. However,
since our first pattern doesn’t include <page> in the pattern, we’ll need
to provide a default to our function. We can either provide a default in the
method signature, like above, or we can pass a dict for the options keyword
argument to route.:

@plugin.route('/categories/<category_id>', name='show_category_firstpage', options={'page': '0'})
@plugin.route('/categories/<category_id>/<page>')
def show_category(category_id, page):
 pass

In these two examples, we would build urls for the different routes like so:

For the show_category_firstpage view
plugin.url_for('show_category_firstpage', category_id='science')

For the show_category view
plugin.url_for('show_category', category_id='science', page='3')

Extra Parameters

Ocassionaly you might need to pass an argument to a view, but you don’t want to
necessarily want to clutter up the URL pattern. Any extra keyword arguments
passed to url_for, that don’t match a variable name in the URL pattern, will be
appended as query string arguments. They can then be accessed using
plugin.request.args.

URL Encoding and Pickling

Currently all keyword arguments to url_for that match variable names in the
URL pattern must be instances of basestring. This means ints must be converted
first using str(). Arguments will then be urlencoded/urlunencoded by
xbmcswift2.

Any extra arguments that will end up in the query string, will be pickled and
urlencoded automatically. This can be advantageous, if you want to store a
simple list or something. However, pickling and urlencoding a python object can
result in a very large URL and XBMC will only handle a finite length, so use
this feature judiciously.

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

Caching and Storage

xbmcswift2 offers a few options for caching and storage to help improve the
user experience of your addon. swift offers a simple storage mechanism that
allows you to store arbitraty python objects to use between requests.

Warning

The current implementation of xbmcswift2’s storage is very basic and is not
thread safe. If your addon does background calls via the context menu and
manipulates storages in these backgound threads, you might run into some
issues.

Storing Arbitraty Python Objects

All caches/storage objects in xbmcswift2 act like python dictionaries. So to
get a cache, simply call the get_storage method.

people = plugin.get_storage('people')

now we can use people like a regular dict
people['jon'] = 'developer'
people.update({'dave': 'accountant'})

people.items()
[('jon', 'deveoper'), ('dave', 'accountant')]

Caches are automatically persisted to disk each time an addon finishes
execution. If you would like to sync the cache to disk manually, you can call
cache.sync() directly. However, this is not normally necessary.

File Formats

By default, caches are saved to disk in the pickle format. This is convenient
since it can store Python objects. However, you can also pass ‘csv’ or ‘json’
for the file_format keyword arg to the get_storage call.

Expirations

Caches also offer an optional argument, TTL, which is the max lifetime for
objects specified in minutes.

people = plugin.get_storage('people', TTL=24)

Caching Decorator

xbmcswift2 provides a convenient caching decorator to automatically cache the
output of a function. For example, suppose we have a function get_api_data,
that goes out to a remote API and fetches lots of data. If the website only
updates the API once a day, it doesn’t make sense to make this request every
time the addon is run. So we can use the caching decorator with a TTL argument.

@plugin.cached(TTL=60*24)
def get_api_data();
 # make remote request
 data = get_remote_data()
 return data

The default TTL is 1 day if not provided.

Caching Views

It’s also possible to cache views (functions decorated with
plugin.route()). To simplify addon code, there is a special decorator
called cached_route. All of the arguments to cached_route are the same as
the regular route decorator. Currently, it is not possible to specify a TTL
for this decorator; it defaults to 24 hours.

@plugin.cached_route('/')
def main_menu();
 # do stuff

Warning

This is only currently possible for views that return lists of
dictionaries. If you call plugin.finish() you cannot currently
cache the view. See the below section ‘Caveats’ for more
information.

Warning

It is currently only possible to attach a single cached_route to a
view. If you have multiple routes on a given view, try refactoring
some logic out to a new function that can be cached, instead of
using the cached_route decorator.

Caveats

The caching features of xbmcswift2 are still young and thus have some potential
problems to be aware of.

	First, if you are calling plugin.finish from a view, it is not currently
possible to cache the view. This is because there are a few side effects
which happen in finish which would not be cached. If this is the case,
perhaps you can move some functionality in your view into a new function, and
cache that result instead.

	Ensure variables are part of your method signature. If you cache a given
function, ensure that all possible inputs are in your method signature.
xbmcswift2 uses the arguments passed to your function as the unique key for
the cache. Therefore it’s possible to cache different return values for
different inputs for a function. But if you check some global state from
inside your function, the caching logic will have no knowlege of this and
will return the wrong result.

	Currently, caches can grow very large since they do not automatically purge
themselves based on filesize. Depending on what you are caching, you might
need to introduce some logic to clear the cache.

cache = plugin.get_cache('people')
cache.clear()
cache.sync()

	It’s advisable to include caching as the final step in your development
process. If you are still developing your addon, occasionally incorrect
return values can be cached which will cause you headaches.

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

Patterns

Caching

View Caching

Use the cached_route() decorator instead of the normal
route decorator. This will cache the results of your view for 24 hours.

NOTE: You must be returning a list of plain dictionaries from your view and
cannot return plugin.finish(). This is due to a current limitation in the cache
which doesn’t keep track of side effects such as a call to plugin.finish. If
you need to call plugin.finish() because you are passing non-default arguments,
then see the next example which uses plugin.cached().

@plugin.cached_route('/subjects/', options={'url': full_url('subjects')})
def show_subjects(url):
 '''Lists available subjects found on the website'''
 html = htmlify(url)
 subjects = html.findAll('a', {'class': 'subj-links'})

 items = [{
 'label': subject.div.string.strip(),
 'path': plugin.url_for('show_topics', url=full_url(subject['href'])),
 } for subject in subjects]
 return items

General Function Caching

To cache the results of any function call, simply use the
cached() decorator. Keep in mind that the function name
along with the args and kwargs used to call the function are used as the cache
key. If your function depends on any variables in outer scope which could
affect the return value, you should pass in those variables explictly as args
to ensure a different cache entry is created.

@plugin.cached()
def get_api_data():
 return download_data()

Storing Arbitrary Objects

You can always create your own persistent storage using
get_storage(). The returned storage acts like a
dictionary, however it is automatically persisted to disk.

storage = plugin.get_storage('people')
storage['jon'] = {'vehicle': 'bike'}
storage['dave'] # Throws KeyError
storage.get('dave') # Returns None
storage.clear() # Clears all items from the storage

Adding pagination

If you are scraping a website that uses pagination, it’s possible to present
the same interface in XBMC without having to scrape all of the pages up front.
To accomplish this, we are going to create our own Next and Previous list
items which go the next and previous page of results respectively. We’re also
going to take advantage of a parameter option that gets passed to XBMC,
updateListing. If we pass True for this parameter, then every time the use
clicks the Next item, the URL won’t be added to history. This enables the ”..”
list item to go to the correct parent directory, instead of the previous page.

Some example code:

@plugin.route('/videos/<page>')
def show_videos(page='1'):
 page = int(page) # all url params are strings by default
 videos, next_page = get_videos(page)
 items = [make_item(video) for video in videos]

 if next_page:
 items.insert(0, {
 'label': 'Next >>',
 'path': plugin.url_for('show_videos', page=str(page + 1))
 })

 if page > 1:
 items.insert(0, {
 'label': '<< Previous',
 'path': plugin.url_for('show_videos', page=str(page - 1))
 })

 return plugin.finish(items, update_listing=True)

The first thing to notice about our view, is that it takes a page number as a
URL parameter. We then pass the page number to the API call, get_videos(), to
return the correct data based on the current page. Then we create our own
previous/next list items depending on the current page. Lastly, we are
returning the result of the call to plugin.finish(). By default, when you
normally return a list of dicts, plugin.finish() is called for you. However, in
this case we need to pass the update_listing=True parameter so we must call it
explictly.

Setting update_listing to True, notifies XBMC that we are paginating, and that
every new page should not be a new entry in the history.

Reusing views with multiple routes

It is possible to decorate views with more than one route. This becomes useful
if you are parsing different URLs that share the same parsing code. In order to
unambiguously use url_for(), you need to pass a value
for the name keyword argument. When calling url_for, you pass this
specified name instead of the name of the actual function.

If the decorated method requires arguments, it is possible to pass these as
default keyword arguments to the route decorator. Also, the function itself
can use python’s default argument syntax.

@plugin.route('/movies/', name='show_movie_genres')
@plugin.route('/silents/', name='show_silent_genres', options={'path': 'index.php/silent-films-menu'})
@plugin.route('/serials/', name='show_serials', options={'path': 'index.php/serials'})
def show_genres(path='movies'):
 pass

Adding sort methods

Sort methods enable the user to sort a directory listing in different ways. You
can see the available sort methods here [http://mirrors.xbmc.org/docs/python-docs/xbmcplugin.html#-addSortMethod], or
by doing dir(xbmcswift2.SortMethod). The simplest way to add sort methods to
your views is to call plugin.finish() with a sort_methods argument and return
the result from your view (this is what xbmcswift2 does behind the scenes
normally).

@plugin.route('/movies')
def show_movies():
 movies = api.get_movies()
 items = [create_item(movie) for movie in movies]
 return plugin.finish(items, sort_methods=['playlist_order', 'title', 'date'])

See xbmcswift2.Plugin.finish() for more information.

Playing RTMP urls

If we need to play an RTMP url, we can use xbmcswift.Plugin.play_video().

@plugin.route('/live/')
def watch_live():
 item = {
 'label': 'AlJazeera Live',
 'path': 'rtmp://aljazeeraflashlivefs.fplive.net:1935/aljazeeraflashlive-live/aljazeera_english_1 live=true',
 }
 return plugin.play_video(item)

Using settings

how to use settings

Using the Context Menu

XBMC allows plugin to authors to update the context menu on a per list item
basis. This allows you to add more functionality to your addons, as you can
allow users other actions for a given item. One popular use for this feature is
to create allow playable items to be added to custom playlists within the
addon. (See the itunes [https://github.com/dersphere/plugin.video.itunes_podcasts] or reddit-music [https://github.com/jbeluch/xbmc-reddit-music] addons for implementations).

In xbmcswift2, adding context menu items is accomplished by passing a value for
the context_menu key in an item dict. The value should be a list of 2-tuples.
Each tuple corresponds to a context menu item, and should be of the format
(display_string, action) where action is a string corresponding to one of
XBMC’s built-in functions [http://wiki.xbmc.org/?title=List_of_Built_In_Functions]. See XBMC’s documentation [http://mirrors.xbmc.org/docs/python-docs/xbmcgui.html#ListItem-addContextMenuItems]
for more information.

The most common actions are XBMC.RunPlugin() and XBMC.Container.Update().
RunPlugin takes a single argument, a URL for a plugin (you can create a URL
with xbmcswift2.Plugin.url_for()). XBMC will then run your plugin in a
background thread, it will not affect the current UI. So, RunPlugin is good
for any sort of background task. Update(), however will change the current UI
directory, so is useful when data is updated and you need to refresh the
screen.

If you are using one of the two above built-ins, there are convenience
functions in xbmcswift2 in the actions module.

Here is a quick example of updating the context menu.

from xbmcswift2 import actions

@plugin.url('/favorites/add/<url>')
def add_to_favs(url):
 # this is a background view
 ...

def make_favorite_ctx(url)
 label = 'Add to favorites'
 new_url = plugin.url_for('add_to_favorites', url=url)
 return (label, actions.background(new_url))

@plugin.route('/movies')
def show_movies()
 items = [{
 ...
 'context_menu': [
 make_favorite_ctx(movie['url']),
],
 'replace_context_menu': True,
 } for movie in movies]
 return items

Sometimes the context_menu value can become very nested, so we’ve pulled out
the logic into the make_favorite_ctx function. Notice also the use of the
replace_context_menu key and the True value. This instructs XBMC to clear the
context menu prior to adding your context menu items. By default, your context
menu items are mixed in with the built in options.

Using extra parameters in the query string

When calling xbmcswift.Plugin.url_for(), any keyword arguments passed
that are not required for the specified view function will be added as query
string arguments.

A dict of query string parameters can be accessed from plugin.request.args.

Any arguments that are not instances of basestring will attempt to be preserved
by pickling them before being encoded into the query string. This functionality
isn’t fully tested however, and XBMC does limit the length of URLs. If you need
to preserve python objects between function calls, see the Caching patterns.

Using Modules

Modules are meant to be mini-addons. They have some basic functionality that
is separate from the main plugin. In order to be used, they must be registered
with a plugin.

Creating an add to favorites plugin:

from xbmcswift import Module

playlist = Module(__name__)

@playlist.route('/add/')
def add_to_playlist():
 items = [playlist.qs_args]
 return playlist._plugin.add_to_playlist(items)

Examples of plugins

	add to favorites

	report to google form

Testing with Nose

How to test with nose

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

API

Covers every method of xbmcswift2

Plugin Object

	
class xbmcswift2.Plugin(name=None, addon_id=None, filepath=None, info_type=None)

	The Plugin objects encapsulates all the properties and methods necessary
for running an XBMC plugin. The plugin instance is a central place for
registering view functions and keeping track of plugin state.

Usually the plugin instance is created in the main addon.py file for the
plugin. Typical creation looks like this:

from xbmcswift2 import Plugin
plugin = Plugin('Hello XBMC')

Changed in version 0.2: The addon_id and filepath parameters are now optional. They will
now default to the correct values.

	Parameters:	
	name – The name of the plugin, e.g. ‘Academic Earth’.

	addon_id – The XBMC addon ID for the plugin, e.g.
‘plugin.video.academicearth’. This parameter is now
optional and is really only useful for testing purposes.
If it is not provided, the correct value will be parsed
from the addon.xml file.

	filepath – Optional parameter. If provided, it should be the path to
the addon.py file in the root of the addon directoy. This
only has an effect when xbmcswift2 is running on the
command line. Will default to the current working
directory since xbmcswift2 requires execution in the root
addon directoy anyway. The parameter still exists to ease
testing.

	
add_items(items)

	Adds ListItems to the XBMC interface. Each item in the
provided list should either be instances of xbmcswift2.ListItem,
or regular dictionaries that will be passed to
xbmcswift2.ListItem.from_dict. Returns the list of ListItems.

	Parameters:	items – An iterable of items where each item is either a
dictionary with keys/values suitable for passing to
xbmcswift2.ListItem.from_dict() or an instance of
xbmcswift2.ListItem.

	
add_sort_method(sort_method, label2_mask=None)

	A wrapper for xbmcplugin.addSortMethod() [http://mirrors.xbmc.org/docs/python-docs/xbmcplugin.html#-addSortMethod].
You can use dir(xbmcswift2.SortMethod) to list all available sort
methods.

	Parameters:	
	sort_method – A valid sort method. You can provided the constant
from xbmcplugin, an attribute of SortMethod, or a
string name. For instance, the following method
calls are all equivalent:

	plugin.add_sort_method(xbmcplugin.SORT_METHOD_TITLE)

	plugin.add_sort_metohd(SortMethod.TITLE)

	plugin.add_sort_method('title')

	label2_mask – A mask pattern for label2. See the XBMC
documentation [http://mirrors.xbmc.org/docs/python-docs/xbmcplugin.html#-addSortMethod]
for more information.

	
add_to_playlist(items, playlist='video')

	Adds the provided list of items to the specified playlist.
Available playlists include video and music.

	
add_url_rule(url_rule, view_func, name, options=None)

	This method adds a URL rule for routing purposes. The
provided name can be different from the view function name if
desired. The provided name is what is used in url_for to build
a URL.

The route decorator provides the same functionality.

	
added_items

	The list of currently added items.

Even after repeated calls to add_items(), this
property will contain the complete list of added items.

	
addon

	This plugin’s wrapped instance of xbmcaddon.Addon.

	
cached(TTL=1440)

	A decorator that will cache the output of the wrapped function. The
key used for the cache is the function name as well as the *args and
**kwargs passed to the function.

	Parameters:	TTL – time to live in minutes

Note

For route caching, you should use
xbmcswift2.Plugin.cached_route().

	
cached_route(url_rule, name=None, options=None, TTL=None)

	A decorator to add a route to a view and also apply caching. The
url_rule, name and options arguments are the same arguments for the
route function. The TTL argument if given will passed along to the
caching decorator.

	
clear_function_cache()

	Clears the storage that caches results when using
xbmcswift2.Plugin.cached_route() or
xbmcswift2.Plugin.cached().

	
end_of_directory(succeeded=True, update_listing=False, cache_to_disc=True)

	Wrapper for xbmcplugin.endOfDirectory. Records state in
self._end_of_directory.

Typically it is not necessary to call this method directly, as
calling finish() will call this method.

	
finish(items=None, sort_methods=None, succeeded=True, update_listing=False, cache_to_disc=True, view_mode=None)

	Adds the provided items to the XBMC interface.

	Parameters:	
	items – an iterable of items where each item is either a
dictionary with keys/values suitable for passing to
xbmcswift2.ListItem.from_dict() or an instance of
xbmcswift2.ListItem.

	sort_methods – a list of valid XBMC sort_methods. Each item in
the list can either be a sort method or a tuple of
sort_method, label2_mask. See
add_sort_method() for
more detail concerning valid sort_methods.

Example call with sort_methods:

sort_methods = ['label', 'title', ('date', '%D')]
plugin.finish(items, sort_methods=sort_methods)

	view_mode – can either be an integer (or parseable integer
string) corresponding to a view_mode or the name of a type of view.
Currrently the only view type supported is ‘thumbnail’.

	Returns:	a list of all ListItems added to the XBMC interface.

	
get_setting(key, converter=None, choices=None)

	Returns the settings value for the provided key.
If converter is str, unicode, bool or int the settings value will be
returned converted to the provided type.
If choices is an instance of list or tuple its item at position of the
settings value be returned.
.. note:: It is suggested to always use unicode for text-settings

because else xbmc returns utf-8 encoded strings.

	Parameters:	
	key – The id of the setting defined in settings.xml.

	converter – (Optional) Choices are str, unicode, bool and int.

	converter – (Optional) Choices are instances of list or tuple.

	Examples:

	
	plugin.get_setting('per_page', int)

	plugin.get_setting('password', unicode)

	plugin.get_setting('force_viewmode', bool)

	plugin.get_setting('content', choices=('videos', 'movies'))

	
get_storage(name='main', file_format='pickle', TTL=None)

	Returns a storage for the given name. The returned storage is a
fully functioning python dictionary and is designed to be used that
way. It is usually not necessary for the caller to load or save the
storage manually. If the storage does not already exist, it will be
created.

See also

xbmcswift2.TimedStorage for more details.

	Parameters:	
	name – The name of the storage to retrieve.

	file_format – Choices are ‘pickle’, ‘csv’, and ‘json’. Pickle is
recommended as it supports python objects.

Note

If a storage already exists for the given
name, the file_format parameter is
ignored. The format will be determined by
the existing storage file.

	TTL – The time to live for storage items specified in minutes or None
for no expiration. Since storage items aren’t expired until a
storage is loaded form disk, it is possible to call
get_storage() with a different TTL than when the storage was
created. The currently specified TTL is always honored.

	
get_string(stringid)

	Returns the localized string from strings.xml for the given
stringid.

	
get_view_mode_id(view_mode)

	Attempts to return a view_mode_id for a given view_mode
taking into account the current skin. If not view_mode_id can
be found, None is returned. ‘thumbnail’ is currently the only
suppported view_mode.

	
handle

	The current plugin’s handle. Equal to plugin.request.handle.

	
id

	The id for the addon instance.

	
keyboard(default=None, heading=None, hidden=False)

	Displays the keyboard input window to the user. If the user does not
cancel the modal, the value entered by the user will be returned.

	Parameters:	
	default – The placeholder text used to prepopulate the input field.

	heading – The heading for the window. Defaults to the current
addon’s name. If you require a blank heading, pass an
empty string.

	hidden – Whether or not the input field should be masked with
stars, e.g. a password field.

	
list_storages()

	Returns a list of existing stores. The returned names can then be
used to call get_storage().

	
log

	The log instance for the plugin. Returns an instance of the
stdlib’s logging.Logger. This log will print to STDOUT when running
in CLI mode and will forward messages to XBMC’s log when running in
XBMC. Some examples:

plugin.log.debug('Debug message')
plugin.log.warning('Warning message')
plugin.log.error('Error message')

	
name

	The addon’s name

	
notify(msg='', title=None, delay=5000, image='')

	Displays a temporary notification message to the user. If
title is not provided, the plugin name will be used. To have a
blank title, pass ‘’ for the title argument. The delay argument
is in milliseconds.

	
open_settings()

	Opens the settings dialog within XBMC

	
redirect(url)

	Used when you need to redirect to another view, and you only
have the final plugin:// url.

	
register_module(module, url_prefix)

	Registers a module with a plugin. Requires a url_prefix that
will then enable calls to url_for.

	Parameters:	
	module – Should be an instance xbmcswift2.Module.

	url_prefix – A url prefix to use for all module urls,
e.g. ‘/mymodule’

	
request

	The current Request.

Raises an Exception if the request hasn’t been initialized yet via
run().

	
route(url_rule, name=None, options=None)

	A decorator to add a route to a view. name is used to
differentiate when there are multiple routes for a given view.

	
run(test=False)

	The main entry point for a plugin.

	
set_content(content)

	Sets the content type for the plugin.

	
set_resolved_url(item=None, subtitles=None)

	Takes a url or a listitem to be played. Used in conjunction with a
playable list item with a path that calls back into your addon.

	Parameters:	
	item – A playable list item or url. Pass None to alert XBMC of a
failure to resolve the item.

Warning

When using set_resolved_url you should ensure
the initial playable item (which calls back
into your addon) doesn’t have a trailing
slash in the URL. Otherwise it won’t work
reliably with XBMC’s PlayMedia().

	subtitles – A URL to a remote subtitles file or a local filename
for a subtitles file to be played along with the
item.

	
set_view_mode(view_mode_id)

	Calls XBMC’s Container.SetViewMode. Requires an integer
view_mode_id

	
storage_path

	A full path to the storage folder for this plugin’s addon data.

	
url_for(endpoint, **items)

	Returns a valid XBMC plugin URL for the given endpoint name.
endpoint can be the literal name of a function, or it can
correspond to the name keyword arguments passed to the route
decorator.

Raises AmbiguousUrlException if there is more than one possible
view for the given endpoint name.

ListItem

	
class xbmcswift2.ListItem(label=None, label2=None, icon=None, thumbnail=None, path=None)

	A wrapper for the xbmcgui.ListItem class. The class keeps track
of any set properties that xbmcgui doesn’t expose getters for.

	
add_context_menu_items(items, replace_items=False)

	Adds context menu items. If replace_items is True all
previous context menu items will be removed.

	
add_stream_info(stream_type, stream_values)

	Adds stream details

	
as_tuple()

	Returns a tuple of list item properties:
(path, the wrapped xbmcgui.ListItem, is_folder)

	
as_xbmc_listitem()

	Returns the wrapped xbmcgui.ListItem

	
classmethod from_dict(label=None, label2=None, icon=None, thumbnail=None, path=None, selected=None, info=None, properties=None, context_menu=None, replace_context_menu=False, is_playable=None, info_type='video', stream_info=None)

	A ListItem constructor for setting a lot of properties not
available in the regular __init__ method. Useful to collect all
the properties in a dict and then use the **dct to call this
method.

	
get_context_menu_items()

	Returns the list of currently set context_menu items.

	
get_icon()

	Returns the listitem’s icon image

	
get_is_playable()

	Returns True if the listitem is playable, False if it is a
directory

	
get_label()

	Sets the listitem’s label

	
get_label2()

	Returns the listitem’s label2

	
get_path()

	Returns the listitem’s path

	
get_played()

	Returns True if the video was played.

	
get_property(key)

	Returns the property associated with the given key

	
get_thumbnail()

	Returns the listitem’s thumbnail image

	
icon

	Returns the listitem’s icon image

	
is_selected()

	Returns True if the listitem is selected.

	
label

	Sets the listitem’s label

	
label2

	Returns the listitem’s label2

	
path

	Returns the listitem’s path

	
playable

	Returns True if the listitem is playable, False if it is a
directory

	
select(selected_status=True)

	Sets the listitems selected status to the provided value.
Defaults to True.

	
selected

	Returns True if the listitem is selected.

	
set_icon(icon)

	Sets the listitem’s icon image

	
set_info(type, info_labels)

	Sets the listitems info

	
set_is_playable(is_playable)

	Sets the listitem’s playable flag

	
set_label(label)

	Returns the listitem’s label

	
set_label2(label)

	Sets the listitem’s label2

	
set_path(path)

	Sets the listitem’s path

	
set_played(was_played)

	Sets the played status of the listitem. Used to
differentiate between a resolved video versus a playable item.
Has no effect on XBMC, it is strictly used for xbmcswift2.

	
set_property(key, value)

	Sets a property for the given key and value

	
set_thumbnail(thumbnail)

	Sets the listitem’s thumbnail image

	
thumbnail

	Returns the listitem’s thumbnail image

Request

	
class xbmcswift2.Request(url, handle)

	The request objects contains all the arguments passed to the plugin via
the command line.

	Parameters:	
	url – The complete plugin URL being requested. Since XBMC typically
passes the URL query string in a separate argument from the
base URL, they must be joined into a single string before being
provided.

	handle – The handle associated with the current request.

	
handle = None

	The current request’s handle, an integer.

	
url = None

	The entire request url.

Actions

xbmcswift2.actions

This module contains wrapper functions for XBMC built-in functions.

	copyright:	
	2012 by Jonathan Beluch

	license:	GPLv3, see LICENSE for more details.

	
xbmcswift2.actions.background(url)[source]

	This action will run an addon in the background for the provided URL.

See ‘XBMC.RunPlugin()’ at
http://wiki.xbmc.org/index.php?title=List_of_built-in_functions.

	
xbmcswift2.actions.update_view(url)[source]

	This action will update the current container view with provided url.

See ‘XBMC.Container.Update()’ at
http://wiki.xbmc.org/index.php?title=List_of_built-in_functions.

Extended API

Module

	
class xbmcswift2.Module(namespace)

	Modules are basically mini plugins except they don’t have any
functionality until they are registered with a Plugin.

	
add_items(items)

	Adds ListItems to the XBMC interface. Each item in the
provided list should either be instances of xbmcswift2.ListItem,
or regular dictionaries that will be passed to
xbmcswift2.ListItem.from_dict. Returns the list of ListItems.

	Parameters:	items – An iterable of items where each item is either a
dictionary with keys/values suitable for passing to
xbmcswift2.ListItem.from_dict() or an instance of
xbmcswift2.ListItem.

	
add_sort_method(sort_method, label2_mask=None)

	A wrapper for xbmcplugin.addSortMethod() [http://mirrors.xbmc.org/docs/python-docs/xbmcplugin.html#-addSortMethod].
You can use dir(xbmcswift2.SortMethod) to list all available sort
methods.

	Parameters:	
	sort_method – A valid sort method. You can provided the constant
from xbmcplugin, an attribute of SortMethod, or a
string name. For instance, the following method
calls are all equivalent:

	plugin.add_sort_method(xbmcplugin.SORT_METHOD_TITLE)

	plugin.add_sort_metohd(SortMethod.TITLE)

	plugin.add_sort_method('title')

	label2_mask – A mask pattern for label2. See the XBMC
documentation [http://mirrors.xbmc.org/docs/python-docs/xbmcplugin.html#-addSortMethod]
for more information.

	
add_to_playlist(items, playlist='video')

	Adds the provided list of items to the specified playlist.
Available playlists include video and music.

	
add_url_rule(url_rule, view_func, name, options=None)

	This method adds a URL rule for routing purposes. The
provided name can be different from the view function name if
desired. The provided name is what is used in url_for to build
a URL.

The route decorator provides the same functionality.

	
added_items

	Returns this module’s added_items

	
addon

	Returns the module’s addon

	
cache_path

	Returns the module’s cache_path.

	
cached(TTL=1440)

	A decorator that will cache the output of the wrapped function. The
key used for the cache is the function name as well as the *args and
**kwargs passed to the function.

	Parameters:	TTL – time to live in minutes

Note

For route caching, you should use
xbmcswift2.Plugin.cached_route().

	
clear_function_cache()

	Clears the storage that caches results when using
xbmcswift2.Plugin.cached_route() or
xbmcswift2.Plugin.cached().

	
end_of_directory(succeeded=True, update_listing=False, cache_to_disc=True)

	Wrapper for xbmcplugin.endOfDirectory. Records state in
self._end_of_directory.

Typically it is not necessary to call this method directly, as
calling finish() will call this method.

	
finish(items=None, sort_methods=None, succeeded=True, update_listing=False, cache_to_disc=True, view_mode=None)

	Adds the provided items to the XBMC interface.

	Parameters:	
	items – an iterable of items where each item is either a
dictionary with keys/values suitable for passing to
xbmcswift2.ListItem.from_dict() or an instance of
xbmcswift2.ListItem.

	sort_methods – a list of valid XBMC sort_methods. Each item in
the list can either be a sort method or a tuple of
sort_method, label2_mask. See
add_sort_method() for
more detail concerning valid sort_methods.

Example call with sort_methods:

sort_methods = ['label', 'title', ('date', '%D')]
plugin.finish(items, sort_methods=sort_methods)

	view_mode – can either be an integer (or parseable integer
string) corresponding to a view_mode or the name of a type of view.
Currrently the only view type supported is ‘thumbnail’.

	Returns:	a list of all ListItems added to the XBMC interface.

	
get_setting(key, converter=None, choices=None)

	Returns the settings value for the provided key.
If converter is str, unicode, bool or int the settings value will be
returned converted to the provided type.
If choices is an instance of list or tuple its item at position of the
settings value be returned.
.. note:: It is suggested to always use unicode for text-settings

because else xbmc returns utf-8 encoded strings.

	Parameters:	
	key – The id of the setting defined in settings.xml.

	converter – (Optional) Choices are str, unicode, bool and int.

	converter – (Optional) Choices are instances of list or tuple.

	Examples:

	
	plugin.get_setting('per_page', int)

	plugin.get_setting('password', unicode)

	plugin.get_setting('force_viewmode', bool)

	plugin.get_setting('content', choices=('videos', 'movies'))

	
get_storage(name='main', file_format='pickle', TTL=None)

	Returns a storage for the given name. The returned storage is a
fully functioning python dictionary and is designed to be used that
way. It is usually not necessary for the caller to load or save the
storage manually. If the storage does not already exist, it will be
created.

See also

xbmcswift2.TimedStorage for more details.

	Parameters:	
	name – The name of the storage to retrieve.

	file_format – Choices are ‘pickle’, ‘csv’, and ‘json’. Pickle is
recommended as it supports python objects.

Note

If a storage already exists for the given
name, the file_format parameter is
ignored. The format will be determined by
the existing storage file.

	TTL – The time to live for storage items specified in minutes or None
for no expiration. Since storage items aren’t expired until a
storage is loaded form disk, it is possible to call
get_storage() with a different TTL than when the storage was
created. The currently specified TTL is always honored.

	
get_string(stringid)

	Returns the localized string from strings.xml for the given
stringid.

	
get_view_mode_id(view_mode)

	Attempts to return a view_mode_id for a given view_mode
taking into account the current skin. If not view_mode_id can
be found, None is returned. ‘thumbnail’ is currently the only
suppported view_mode.

	
handle

	Returns this module’s handle

	
keyboard(default=None, heading=None, hidden=False)

	Displays the keyboard input window to the user. If the user does not
cancel the modal, the value entered by the user will be returned.

	Parameters:	
	default – The placeholder text used to prepopulate the input field.

	heading – The heading for the window. Defaults to the current
addon’s name. If you require a blank heading, pass an
empty string.

	hidden – Whether or not the input field should be masked with
stars, e.g. a password field.

	
list_storages()

	Returns a list of existing stores. The returned names can then be
used to call get_storage().

	
log

	Returns the registered plugin’s log.

	
notify(msg='', title=None, delay=5000, image='')

	Displays a temporary notification message to the user. If
title is not provided, the plugin name will be used. To have a
blank title, pass ‘’ for the title argument. The delay argument
is in milliseconds.

	
open_settings()

	Opens the settings dialog within XBMC

	
plugin

	Returns the plugin this module is registered to, or raises a
RuntimeError if not registered.

	
redirect(url)

	Used when you need to redirect to another view, and you only
have the final plugin:// url.

	
request

	Returns the current request

	
route(url_rule, name=None, options=None)

	A decorator to add a route to a view. name is used to
differentiate when there are multiple routes for a given view.

	
set_content(content)

	Sets the content type for the plugin.

	
set_resolved_url(item=None, subtitles=None)

	Takes a url or a listitem to be played. Used in conjunction with a
playable list item with a path that calls back into your addon.

	Parameters:	
	item – A playable list item or url. Pass None to alert XBMC of a
failure to resolve the item.

Warning

When using set_resolved_url you should ensure
the initial playable item (which calls back
into your addon) doesn’t have a trailing
slash in the URL. Otherwise it won’t work
reliably with XBMC’s PlayMedia().

	subtitles – A URL to a remote subtitles file or a local filename
for a subtitles file to be played along with the
item.

	
set_view_mode(view_mode_id)

	Calls XBMC’s Container.SetViewMode. Requires an integer
view_mode_id

	
url_for(endpoint, explicit=False, **items)

	Returns a valid XBMC plugin URL for the given endpoint name.
endpoint can be the literal name of a function, or it can
correspond to the name keyword arguments passed to the route
decorator.

Currently, view names must be unique across all plugins and
modules. There are not namespace prefixes for modules.

	
url_prefix

	Sets or gets the url prefix of the module.

Raises an Exception if this module is not registered with a
Plugin.

TimedStorage

	
class xbmcswift2.TimedStorage(filename, file_format='pickle', TTL=None)

	A dict with the ability to persist to disk and TTL for items.

	
close()

	Calls sync

	
dump(fileobj)

	Handles the writing of the dict to the file object

	
get(k[, d]) D[k] if k in D, else d. d defaults to None.

	

	
initial_update(mapping)

	Initially fills the underlying dictionary with keys, values and
timestamps.

	
items() list of D's (key, value) pairs, as 2-tuples

	

	
iteritems() an iterator over the (key, value) items of D

	

	
iterkeys() an iterator over the keys of D

	

	
itervalues() an iterator over the values of D

	

	
keys() list of D's keys

	

	
load(fileobj)

	Load the dict from the file object

	
pop(k[, d]) v, remove specified key and return the corresponding value.

	If key is not found, d is returned if given, otherwise KeyError is raised.

	
popitem() (k, v), remove and return some (key, value) pair

	as a 2-tuple; but raise KeyError if D is empty.

	
raw_dict()

	Returns the wrapped dict

	
setdefault(k[, d]) D.get(k,d), also set D[k]=d if k not in D

	

	
sync()

	Write the dict to disk

	
update([E,]**F) None. Update D from mapping/iterable E and F.

	If E present and has a .keys() method, does: for k in E: D[k] = E[k]
If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v
In either case, this is followed by: for k, v in F.items(): D[k] = v

	
values() list of D's values

	

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

Upgrading from xbmcswift

While the API for xbmcswift2 is very similar to xbmcswift, there are a few
backwards incompatible changes. The following list highlights the biggest
changes:

	Update all imports to use xbmcswift2 instead of xbmcswift. This
includes the dependency in your addon.xml file.

	In list item dictionaries, the url keyword has been changed to path.

	In xbmcswift views, the proper way to return from a view was
return plugin.add_items(items). In xbmcswift2 you can either return
plugin.finish(items) or more simply return items.

xbmcswift
return plugin.add_items(items)

xbmcswift2
return plugin.finish(items)
(or)
return items

	In the past, the plugin.route() decorator accepted arbitrary keyword
arguments in the call to be used as defaults. These args must now be a single
dictionary for the keyword arg options.

xbmcswift
plugin.route('/', page='1')

xbmcswift2
plugin.route('/', options={'page': '1'})

	In list item dictionaries, the is_folder keyword is no longer necessary.
Directory list items are the default and require no special keyword. If you
wish to create a playable list item, set the is_playable keyword to True.

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	XBMC Swift 1.0.1 documentation

Addons Powered by xbmcswift2

Want your addon included here? Send me an email at web@jonathanbeluch.com with
your addon name and a link to a repository (XBMC’s git repo is fine).

	Addon
	Source

	Academic Earth [http://xbmcaddonbrowser.com/addons/frodo/plugin.video.academicearth/]
	https://github.com/jbeluch/xbmc-academic-earth

	Documentary.net [http://xbmcaddonbrowser.com/addons/frodo/plugin.video.documentary.net/]
	https://github.com/jbeluch/plugin.video.documentary.net

	VimCasts [http://xbmcaddonbrowser.com/addons/frodo/plugin.video.vimcasts/]
	https://github.com/jbeluch/xbmc-vimcasts

	Radio [http://xbmcaddonbrowser.com/addons/frodo/plugin.audio.radio_de/]
	https://github.com/dersphere/plugin.audio.radio_de

	Shoutcast 2 [http://xbmcaddonbrowser.com/addons/frodo/plugin.audio.shoutcast]
	https://github.com/dersphere/plugin.audio.shoutcast

	Cheezburger Network [http://xbmcaddonbrowser.com/addons/frodo/plugin.image.cheezburger_network]
	https://github.com/dersphere/plugin.image.cheezburger_network

	Apple Itunes Podcasts [http://xbmcaddonbrowser.com/addons/frodo/plugin.video.itunes_podcasts]
	https://github.com/dersphere/plugin.video.itunes_podcasts

	MyZen.tv [http://xbmcaddonbrowser.com/addons/frodo/plugin.video.myzen_tv]
	https://github.com/dersphere/plugin.video.myzen_tv

	Rofl.to [http://xbmcaddonbrowser.com/addons/frodo/plugin.video.rofl_to]
	https://github.com/dersphere/plugin.video.rofl_to

	Wimp [http://xbmcaddonbrowser.com/addons/frodo/plugin.video.wimp]
	https://github.com/dersphere/plugin.video.wimp

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	XBMC Swift 1.0.1 documentation

 Python Module Index

 x

 			

 		
 x	

 	[image: -]
 	
 xbmcswift2	

 	
 	
 xbmcswift2.actions	

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	XBMC Swift 1.0.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X

A

 	

 	add_context_menu_items() (xbmcswift2.ListItem method)

 	add_items() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	add_sort_method() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	add_stream_info() (xbmcswift2.ListItem method)

 	add_to_playlist() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	

 	add_url_rule() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	added_items (xbmcswift2.Module attribute)

 	

 	(xbmcswift2.Plugin attribute)

 	addon (xbmcswift2.Module attribute)

 	

 	(xbmcswift2.Plugin attribute)

 	as_tuple() (xbmcswift2.ListItem method)

 	as_xbmc_listitem() (xbmcswift2.ListItem method)

B

 	

 	background() (in module xbmcswift2.actions)

C

 	

 	cache_path (xbmcswift2.Module attribute)

 	cached() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	cached_route() (xbmcswift2.Plugin method)

 	

 	clear_function_cache() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	close() (xbmcswift2.TimedStorage method)

D

 	

 	dump() (xbmcswift2.TimedStorage method)

E

 	

 	end_of_directory() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

F

 	

 	finish() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	

 	from_dict() (xbmcswift2.ListItem class method)

G

 	

 	get() (xbmcswift2.TimedStorage method)

 	get_context_menu_items() (xbmcswift2.ListItem method)

 	get_icon() (xbmcswift2.ListItem method)

 	get_is_playable() (xbmcswift2.ListItem method)

 	get_label() (xbmcswift2.ListItem method)

 	get_label2() (xbmcswift2.ListItem method)

 	get_path() (xbmcswift2.ListItem method)

 	

 	get_played() (xbmcswift2.ListItem method)

 	get_property() (xbmcswift2.ListItem method)

 	get_setting() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	get_storage() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	get_string() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	get_thumbnail() (xbmcswift2.ListItem method)

 	get_view_mode_id() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

H

 	

 	handle (xbmcswift2.Module attribute)

 	

 	(xbmcswift2.Plugin attribute)

 	(xbmcswift2.Request attribute)

I

 	

 	icon (xbmcswift2.ListItem attribute)

 	id (xbmcswift2.Plugin attribute)

 	initial_update() (xbmcswift2.TimedStorage method)

 	is_selected() (xbmcswift2.ListItem method)

 	

 	items() (xbmcswift2.TimedStorage method)

 	iteritems() (xbmcswift2.TimedStorage method)

 	iterkeys() (xbmcswift2.TimedStorage method)

 	itervalues() (xbmcswift2.TimedStorage method)

K

 	

 	keyboard() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	

 	keys() (xbmcswift2.TimedStorage method)

L

 	

 	label (xbmcswift2.ListItem attribute)

 	label2 (xbmcswift2.ListItem attribute)

 	list_storages() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	

 	ListItem (class in xbmcswift2)

 	load() (xbmcswift2.TimedStorage method)

 	log (xbmcswift2.Module attribute)

 	

 	(xbmcswift2.Plugin attribute)

M

 	

 	Module (class in xbmcswift2)

N

 	

 	name (xbmcswift2.Plugin attribute)

 	

 	notify() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

O

 	

 	open_settings() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

P

 	

 	path (xbmcswift2.ListItem attribute)

 	playable (xbmcswift2.ListItem attribute)

 	Plugin (class in xbmcswift2)

 	

 	plugin (xbmcswift2.Module attribute)

 	pop() (xbmcswift2.TimedStorage method)

 	popitem() (xbmcswift2.TimedStorage method)

R

 	

 	raw_dict() (xbmcswift2.TimedStorage method)

 	redirect() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	register_module() (xbmcswift2.Plugin method)

 	Request (class in xbmcswift2)

 	

 	request (xbmcswift2.Module attribute)

 	

 	(xbmcswift2.Plugin attribute)

 	route() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	run() (xbmcswift2.Plugin method)

S

 	

 	select() (xbmcswift2.ListItem method)

 	selected (xbmcswift2.ListItem attribute)

 	set_content() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	set_icon() (xbmcswift2.ListItem method)

 	set_info() (xbmcswift2.ListItem method)

 	set_is_playable() (xbmcswift2.ListItem method)

 	set_label() (xbmcswift2.ListItem method)

 	set_label2() (xbmcswift2.ListItem method)

 	set_path() (xbmcswift2.ListItem method)

 	

 	set_played() (xbmcswift2.ListItem method)

 	set_property() (xbmcswift2.ListItem method)

 	set_resolved_url() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	set_thumbnail() (xbmcswift2.ListItem method)

 	set_view_mode() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	setdefault() (xbmcswift2.TimedStorage method)

 	storage_path (xbmcswift2.Plugin attribute)

 	sync() (xbmcswift2.TimedStorage method)

T

 	

 	thumbnail (xbmcswift2.ListItem attribute)

 	

 	TimedStorage (class in xbmcswift2)

U

 	

 	update() (xbmcswift2.TimedStorage method)

 	update_view() (in module xbmcswift2.actions)

 	url (xbmcswift2.Request attribute)

 	

 	url_for() (xbmcswift2.Module method)

 	

 	(xbmcswift2.Plugin method)

 	url_prefix (xbmcswift2.Module attribute)

V

 	

 	values() (xbmcswift2.TimedStorage method)

X

 	

 	xbmcswift2 (module), [1]

 	

 	xbmcswift2.actions (module)

 Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

 _static/down.png

_static/plus.png

_static/up-pressed.png

_modules/xbmcswift2.html

 Navigation

 		
 index

 		
 modules |

 		XBMC Swift 1.0.1 documentation »

 		Module code »

 Source code for xbmcswift2

'''
 xbmcswift2

 A micro framework to enable rapid development of XBMC plugins.

 :copyright: (c) 2012 by Jonathan Beluch
 :license: GPLv3, see LICENSE for more details.
'''
from types import ModuleType

class module(ModuleType):
 '''A wrapper class for a module used to override __getattr__. This class
 will behave normally for any existing module attributes. For any attributes
 which do not existi in in the wrapped module, a mock function will be
 returned. This function will also return itself enabling multiple mock
 function calls.
 '''

 def __init__(self, wrapped=None):
 self.wrapped = wrapped
 if wrapped:
 self.__dict__.update(wrapped.__dict__)

 def __getattr__(self, name):
 '''Returns any existing attr for the wrapped module or returns a mock
 function for anything else. Never raises an AttributeError.
 '''
 try:
 return getattr(self.wrapped, name)
 except AttributeError:
 def func(*args, **kwargs):
 '''A mock function which returns itself, enabling chainable
 function calls.
 '''
 log.warning('The %s method has not been implented on the CLI. '
 'Your code might not work properly when calling '
 'it.', name)
 return self
 return func

try:
 import xbmc
 import xbmcgui
 import xbmcplugin
 import xbmcaddon
 CLI_MODE = False
except ImportError:
 CLI_MODE = True

 import sys
 from logger import log

 # Mock the XBMC modules
 from mockxbmc import xbmc, xbmcgui, xbmcplugin, xbmcaddon, xbmcvfs
 xbmc = module(xbmc)
 xbmcgui = module(xbmcgui)
 xbmcplugin = module(xbmcplugin)
 xbmcaddon = module(xbmcaddon)
 xbmcvfs = module(xbmcvfs)

from xbmcswift2.storage import TimedStorage
from xbmcswift2.request import Request
from xbmcswift2.common import (xbmc_url, enum, clean_dict, pickle_dict,
 unpickle_args, unpickle_dict, download_page, unhex)
from xbmcswift2.constants import SortMethod, VIEW_MODES
from xbmcswift2.listitem import ListItem
from xbmcswift2.logger import setup_log
from xbmcswift2.module import Module
from xbmcswift2.urls import AmbiguousUrlException, NotFoundException, UrlRule
from xbmcswift2.xbmcmixin import XBMCMixin
from xbmcswift2.plugin import Plugin

 © Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

_modules/xbmcswift2/actions.html

 Navigation

 		
 index

 		
 modules |

 		XBMC Swift 1.0.1 documentation »

 		Module code »

 		xbmcswift2 »

 Source code for xbmcswift2.actions

'''
 xbmcswift2.actions

 This module contains wrapper functions for XBMC built-in functions.

 :copyright: (c) 2012 by Jonathan Beluch
 :license: GPLv3, see LICENSE for more details.
'''

[docs]def background(url):
 '''This action will run an addon in the background for the provided URL.

 See 'XBMC.RunPlugin()' at
 http://wiki.xbmc.org/index.php?title=List_of_built-in_functions.
 '''
 return 'XBMC.RunPlugin(%s)' % url

[docs]def update_view(url):
 '''This action will update the current container view with provided url.

 See 'XBMC.Container.Update()' at
 http://wiki.xbmc.org/index.php?title=List_of_built-in_functions.
 '''
 return 'XBMC.Container.Update(%s)' % url

 © Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		XBMC Swift 1.0.1 documentation »

 All modules for which code is available

		xbmcswift2

		xbmcswift2.actions

 © Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		XBMC Swift 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Jonathan Beluch.
 Created using Sphinx 1.2.2.

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

